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Dispersion relation of guided-mode resonances and Bragg peaks in dielectric diffraction gratings
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We present the dispersion relation of guided-mode resonances in non-dissipative dielectric diffraction grat-
ings, both fors-polarized(TE mode and p-polarized(TM mode incident waves. We present a simple ap-
proximate theory as well as a rigorous calculation within the so-called coupled-wave theory. We discuss the
dependence of the positions and the lifetimes of the resonances on the thickness of the gratings and on the
strength of its modulation. We find that the diffraction efficiency of the different orders show peaks at different
Bragg orders.
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[. INTRODUCTION on the electromagnetic and grating wave vectors and in their

propagating or evanescent character. This yields a clear

Simple diffraction gratings offer a very rich variety of physical picture of the origin of the guided-mode resonances.
optical phenomena not only from a fundamental point ofln our opinion, these aspects have not yet been thoroughly
view but also from their enormous potential for applications.analyzed in the current literature. Section IIl is the main
In particular, modulated dielectric diffraction gratings havecontribution of this article and is devoted to the dispersion
been a focus of attention for some time. Modulated diffrac-elations of the waveguide resonances for both types of po-
tion gratings give rise to such interesting phenomena glarizations. In that section we also make a brl_ef des_cr|pt|0_n

guided-mode resonancks-4], Bragg diffraction[5—7], dif- of the dependence of the resonances on the dielectric gretlng
fraction of pulses[8—10], and diffraction through hetero- modullatlon and on the geometric thickness of the grating.
structureg11-15. Among the most widely implemented ap- Next, n Sec. IV, we S.hOW the appearance of the Bragg peaks
plications is the design of gratings as optical filtgt—27. and point out that higher diffraction orders have peaks at

A motivation for our study is the understanding of the dif- higher order Bragg angles; this has not been appreciated pre-

fraction of ultrashort light pulses by spatiotemporal gratingsV'OUSIy' We provide a nonrigorous explanation for this inter-

[28,29. esting .and potentially useful phenomenon. We conclude this
The theoretical understanding of the diffraction throughpaper in Sec. V.

modulated gratings is, in principle, given by the so-called

coupled-wave theory introduced by Moharam and Gaylord II. COUPLED-WAVE THEORY AND DIFFRACTION

[30-33, which is an ansatz solution of Maxwell equations EFFICIENCIES

for this class of problems. Nonetheless, such a solution has The simplest wav to pose the problem is to consider a

not been found in an analytical closed form, and the problerr(1:Iielectric sIFz)ab in vaycuurrﬁ) nfinite ipn the-z plane and of

is so rich that there are still many questions to be resolved ' P

The purpose of this article is to provide a concise Sum_thlcknessnd in they direction. The diffraction grating is de-

mary of the diffraction of an electromagnetic wave through as?ribed by a dielectric function spatially modulated in the
sinusoidally modulated grating by means of dispersion relag'recnon’ hamely,
tions of the guided-mode resonan¢és-4]. From the corre-
sponding graphical representations of the dispersion relations
one can obtain a clear physical picture of the behavior of the ) ] )
diffraction efficiencies, as functions of frequency and angleVhereé € is the average background dielectric constant and
of incidence, information on the material eigenmodes ancf1 iS the strength of the modulation. This is the problem as
diffraction orders, the positions of guided-mode resonancegriginally considered by Born and Wdl84], where diffrac-
and the appearance of Bragg peaks. tion of light by ultrasemc waves is stud|e_d. One can c_on3|der
We proceed by presenting results from an exact numericd'0ré complicated dielectric gratings, with several different
analysis of the coupled-wave theory and from simple aIOperlod|c funcnons, or placed between different dielectric me-
proximate theoretical arguments. We treat both TE and TMIia, or with a slanted wavevect#r dependencg33]. These
modes(i.e., electric field polarization perpendicular or paral- My be needed in order to describe a particular experimental
lel to the plane of incidenge Section Il presents a quick S|tuat|0n, but as we shall see, the qualitative phenomenon is
review of the coupled-wave theory. We emphasize the facgl€arly independent of those details. Althoughande; may
that the coupled-wave equations give rise to material eigerf?ave arbitrary values, waveguide resonances can be easily

modes that can be classified according to their dependen&Plained if one considers> ¢,. We shall later on describe
the differences when these dielectric constants are of the

same order of magnitude.
*Corresponding author. FAX(52) 5622 5015. Email address: An s- or p-polarized em wave of frequenay is incident
romero@fisica.unam.mx on the grating at an anglé with the y direction, and the

€(X)= €yt €; cOgKX), (D)

1063-651X/2001/648)/0366149)/$20.00 64 036614-1 ©2001 The American Physical Society



SARA NILSEN-HOFSETH AND VICTOR ROMERO-ROCHN PHYSICAL REVIEW E 64 036614

y R . ,
Ein(xy,) =22 Vi(y)etOeiet (TE)  (7)
[
and
d A Bin(x,y,)=22, Uj(y)e'®%eet (TM)  (8)
[
X with I=...,—1,0,1... . Due to thex dependence of the
i dielectric functione(x), the amplituded/,(x) andU,(x) are
0 coupled for all values of through the set of equatiorithat
follow from direct application of Maxwell equatiohs
FIG. 1. The system setup. The system is infinite in ztrec- d2v (y)
tion. The dielectric function is given bg(x) = €o+ €; cosKx), with '2 +[€ow2— (Ky+ 1 K)Z]V|(y)
K=2m/A. dy
1
problem consists in finding the fields inside the grating as + -0 V,_1(Y)+V,41(y)]=0 (TE) (9

well as the reflected and transmitted ones; see Fig. 1. We 2

shall call TE the case afpolarized waves and TM the case and
of p-polarized waves since in the former the fields inside the
grating are similar to TE modes and in the latter to TM

2 2 2
modes in a waveguide. The incident TE electric field is ¢ dUi(y) EE dViay) EE dVialy)
07 gy2 5 €1 dy? 2 €1 dy?
Einc(X,y,t) =2Eoe* 'e”""  (TE) ) 2
|| eot 5| 0= (ke 1K)2 €Uy (y)
and the incident TM magnetic field is 2€g
R - e 1
Binc(X,y,t)=zBgek e et (TM) (3) +| €160+ S0k (1-1)K)

where the incident wave vector is given Byt(kx,ky) with
k,=ksin 6. The ensuing reflected and transmitted fields are
expressed as

1
~ ekt (1= DK]?

1
€1€0w%— Eelw[kx+ (I+1)K]

R A o . XUj_q(y)+
Eou(xy =23 Aler el ieiot (TE) (4

1
d _Eél[kx+(|+1)K]z)U|+l(y)
an

1 1
2 2 2 2 —
B’i t(X y t):’iE Clieiiklyy ei(karlK)Xe*iwt (TM) +Zelw U|—2(y)+Z€1w U|+2(y)_o (TM) (10)
out\ s Y
I

(5  These sets of equations can be cast into eigenvalue problems
in which the matrices to be diagonalized are orthogonal with
where the superindexH) refers toy=d (transmitted and  real elements. Hence, the corresponding eigenvalues, de-
(—) to y=<O (reflected. The wave vector componeky, is  noted ask?=k2(K,w,k,), are real but they can be either

given by =1, so thatk=w) positive or negativé35]. The functionsV,(y) andU,(y) can
therefore be expressed @ésfinite) sums of eigenmodes of
kiy= Ve = (K +1K)2, (6)  the material, namely,

The different values of of the field outside the grating are
called thediffraction orders which can be either propagating
or evanescent depending on whether the compokgnis
real or imaginary. The amplitudely” andC;” are found by and with an analogous expression fdi(y). The eigen-
matching boundary values with the fields inside the gratingmodesa,, correspond to the eigenvalue§ of the above-
The solutions inside the gratings follow from applying mentioned matrix. We note that the solutioks(y) and
Maxwell equations to the ansatz known as coupled-wavéJ,(y) are expressed in terms of the wave vectgyghat are
theory[30-33. That is, the fields inside are assumed to be ahe square roots of the eigenvalues. Therefore, the wave vec-
sum of coupled waves, tors x,, are purely real or purely imaginary; they have a very

v|(y>=§[Anan.e‘w+Bname—iKnVJ, (1)
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important physical meaning and, accordingly, we shall call 10 Y
them propagating or evanescaigenmodesf the material,
depending on whether they are real or imaginary. One mus o

keep in mind that these are electromagnetic eigenmodes of /
material with a dielectric function given by(x), Eq. (1);

that is, they are independent of the thickndss the grating. 0.6 (a)
Clearly, if e;<¢€p, from Egs.(9) and(10) one finds that the
eigenmodes are approximately given by n o

Knm[wzeo—(kx+nK)2]1/2. (12

0.2 4
As we shall see in Sec. lll, the guided-mode resonances ap
pear when the number of propagating eigenmodes is large
than the number of propagating diffraction orders. 0-000 A - o A e
The measurable quantities to be calculated are the re ' ' ' ' ' '
flected and transmitted diffraction efficienci€33]. These o/K
are defined as the ratio of tlyecomponents of the reflected
or transmitted Poynting vectors to the incident one, averagec /\ \ /(‘\
over one grating wave length7ZK in the x direction and / \/ L
over one period Z/w. These efficiencies are a measure of os-
the energy transmitted and reflected by the grating, and cal
be calculated order by order,

0.6 4

s 1 (b)
N+= ig, (13 0.4 4

I+

with an obvious notation, and where the overbar represent: 0.2
the averages mentioned abo®, = (1/87)E{, B['* for the
TE case and an analogous expression for the TM case. Th oo
sum of all efficiencies adds up to one, due to energy conser 0.2 0.4 0.6 0.8 1.0
vation [33]. In our numerical calculations this property is
used to verify the correctedness of the results. For given o/K
values of the incident frequency and angle, we can know in - g1 2. Transmitted diffraction efficiency; as a function of
advance how many real eigenmodes of the system and hogequencyw of the incident monochromatic wave, incident at an
many propagating diffraction orders exig¢the rest being angle 9=28°. The thickness of the diffraction grating is
imaginary, see below Thus, we truncate the matrix gener- =10k ~* with ;=3 ande;=0.121.(a) TE mode. In the inset, the
ated by Eq(9) or (10) so as to obtain energy conservation upfirst resonance is shown in the frequency interval fram
to ten significant digits. =0.470 75K ! to w=0.470 75K 1. (b) TM mode.

In Fig. 2(a) we show an example of the transmitted dif-
fraction efficiency as a function of frequenay of the inci-  gglutions are the analogs of guided modes in actual
dent TE wave, for a slab ad=10K™*, ¢,=3, €,=0.121,  waveguides.
and at an incident angle adf=28°; in the inset, the first
resonance peak is shown at an enlarged scale. In fhgw2
show the TM case for the same parameters. The important
feature we want to highlight is that, besides the expected From the equation&9) and(10) we can find numerically
wide undulations of the transmitted diffraction efficiency duethe dispersion relatiom vs k, by searching for the solutions
to the finite thickness of the slab, there appear at irregulamentioned above. We have performed such a procedure, as
intervals very sharp peaks of large transmission or reflectionwe show below, but first we want to sketch a simple analyti-
These are the guided-mode resonances that we explain in tleal calculation of the dispersion relation that is valid in the
next section. limit e;<ey. The reason for this approximation is that in this
limit the modes inside the slab with different values! @fre
weakly coupled, see Eq$9) and (10). This way, for TE
waves, we assume that we can sgt0 in Eq.(9), so that

A guided mode is a solution of Maxwell equations in all the eigenmodes are now approximately givenay~ oy,
space, the absence of the incident wakkg=€0 for TE and and the wave vectors, by Eq.(12), i.e., the solution(11)
Bo=0 for TM), and in the form of propagating waves in the has one term only. Therefore, we can search for propagating
x direction. In they direction we search for solutions propa- solutions inside the grating by considering oolye mode at
gating through the grating but evanescent outside it. Thesa time as if in a waveguide. Outside the grating we assume

A. Dispersion relations

Ill. GUIDED-MODE RESONANCES
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the fields are evanescent and thetlependence is therefore O~
given by exp€||<4y||y|), where |k|y|=[(kX+IK)2—w2]1/2 ..........................
[see Eq(6)]. Clearly,k,, w, andK are such thak, and|k,| [ >~ LT
are real. It is a simple exercise to show that these solutions 1 T IS
exist if one of the following conditions are satisfiéd. Refs. o/K e (a)
[2,3)): T
054 0 el
t ’_<1 d) ) oy 1 - U
a 2K| —K|/|k|y| e
eolkpy\fy T e
tar(lx,d) :{ ol Kiyl/ x| ™. (15) i
2 _K|/60|k|y| 00 deem
. 0.0 ' 0?1 ' 0!2 I 013 . 0!4 I 0.5
For a given value ofi, the above conditions are the disper- k /K
sion relationsw vs k, of the guided modes in the limi;
<e¢p. In Fig. 3 we show the first Brillouin zone of the Wr———

guided-mode dispersion relatien vs k, for different values e
of d for the TEcase. & TS -
Figure 3a) shows generic features of the dispersion rela- 1 TN~ > JRREE b
tion for the TE case while Figs.(8) and 3c) are particular o/K | ( )
examples ford=1.0K "1 and d=10.0K 1, respectively. In izl
particular, in Fig. 8) we also show the dispersion relation 054 e
obtained from the exact equatiof® for €;=0.121 ande,
=3.0; the actual branches for these values are essentiall | | —™—  _ZFF
identical to the approximate solutiori34), except at the 1 _—
Brillouin zone edges where the actual branches split; see thk | = _~" | I
inset of Fig. 3b). ginE

The general features of the dispersion relation shown in 0.0 Je=r™ G i i i
Fig. 3(a) are the following. First, we can distinguish a region 0.0 0.1 02 03 04 05
formed by the areas bounded from above by the solid lines kx /K
defined by the change of the diffraction ordéfg from real
to imaginary[see Eq.(6)] and from below by the dashed ' -
lines defined by the first time an eigenmodg(K, w,ky)
becomes propagatinffor small €; this is approximately 0.8- s

given by the change of the correspondigigfrom imaginary | sl s, (C)

to real, see Eq(12)]. We find, both from the exact and the " P
approximate calculations, that for any value of the thickness ~ *° TF— g

d of the grating all the guided-mode branches of the disper-OJ/ K{ 7T

sion relation are contained within such a region; let us call it 0.4+ P

the “resonance region.” Of course, the location of the ] Pid s
branches of the guided-mode dispersion relation depend ex s il
plicitely on the given value ofl, see Figs. @) and 3c). ' O e

Second, from the numerical analysis of the structure of the 1 7

eigenmodes of thexactequations(9) and (10), which are 0.0, . . . .
independent ofl, one finds that below the lowest dashed line 0.0 04 02 03 0.4 08

of the resonance region there are no propagating eigen kx/K

modes; between the first and the second dashed lines there is

one; between the second and the third there are two, and so FIG- 3. (@ Generic features of the dispersion relation for
on. In a similar fashion, from the expression fqy, Eq.(6), ~ SPolarized propagation, witlty=3 and e;=0.121. See text(b)
one can see that below the lowest solid line there are r]a'he thI_Ck sgllld line is the dispersion relation for agratlr_lg o_f thick-
propagating diffraction orders outside the grating: betweer€SSd=1K . The inset shows the band gap at the Brillouin zone
the first and second solid lines only the order0 propa- edge.(c) The thick solid lines is the dispersion relation for a grating

. f thick =10k~ Th li he inci
gates; between the second and the third, bothl thé and of thicknessd=10K i dootted ine represents the incident
wave vector at an angle af=28°.
thel=—1 orders propagate, and so on. Hence, we conclude
that within the resonance region the numbepaipagating  each of the fieldeutsidethe grating couple to all the eigen-
eigenmodes is always greater than the numberopagat- modes, this gives the known additional result that the guided
ing diffraction orders. Outside the resonance region thesenodes cannot be strictly evanescent outside the grating

numbers are equal and there are no guided modes. Sineince, in general, there are a finite number of propagating
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diffraction orders. This in turn indicates that the branches of 10

the dispersion relation in Figs.(l® and 3c), have afinite /

width. In other words, the guided modes have a finite life-

time. On the other hand, it is this coupling that allows the

guided modes to be excited. As an aside point we recall tha

the lines defined by, =0 are the places where the so-called o6

Wood anomalie$36] should appear. We have not found any n

peculiar behavior along these lines, other than being the

place where the corresponding diffraction order emerges. 044
From the dispersion relation one can find the origin of the

peaks of the diffraction efficiencies. Consider the case of the

diffraction efficiency of the grating of thicknessd

=10.K ! for the TE mode shown in Fig.(8). In Fig. 3c)

we show the dispersion relation for this case together with a o.0 . . . . . . .

dashed line that represents the frequency of the inciden 0 2 4 6 8 10 12 14

wave, as a function ok,, for an incident angle of)=28°. Kd

The peaks of the corresponding diffraction efficierisge ) ) ] o )

Fig. 2a)] appear at the frequencies where the dashed line F_IG. 4_. Transmltte_d (_jlffractlon efflmen.cy; as a function of

crosses the dispersion relation of the guided modes. We poit‘#?f""“”gflh'Ck'”esi"j for incidents-polarized light at a frequency

out that, by inspection of diffraction efficiencies for several =0.6<"* and at an anglé=28°, €=3 andel:(.)'l?l' For these

different cases, one finds that as frequency is increased, tiRgrameters there are two propagating modes within the slab and one

peaks of the guided-mode resonances tend to be diminishelf*P29ating diffraction order outside of it. The resonances appears

and in some cases, they dissappear altogether. We be"eegnodlcally due to the conditioy <.

this is a consequence of t_he fact thataass mcreased, th(.:‘ . the effect of the coupling between the modes within the grat-

qumber of [Propagating elgenm_odes also Increases, g'vmﬁlg gives rise to the other propagating mode, Consider

Q]S: déc; E:e(i'jlttri':m;gnaOfot:fe')?;gag; eor}etrr?é/ fonrg;g Or::girr]]ynow the propagation of a front of the latter mode starting at
k 9 P P %n arbitrary positiorx in one of the inside walls of the grat-

guided modes. We found that the resonances always afﬁg. When it reaches and bounces off the opposite wall, it

present when the incident wave vector is of the order of th%cquires a phaserd— 2. When it returns to the original
grating wave vector.

wall, it acquires an additional phase2¢. Thus, the total
phase difference between these two fronts is;24¢.

0.2+

B. Physical origin of the resonances When this phase equalsn2r the fields add up in phase
The fact that inside the resonance region the number O¥|eld|ng the resonance. That is,
propagatingeigenmodes is larger than the numbeipaipa- kid—2¢=mm. (16)

gatingdiffraction orders suggests a simple physical explana-

tion for the resonance phenomenon. For this, we refer to Figrhe phasep can easily be calculated by assuming that this

4 where we show the transmitted diffraction efficiency as anode only couples to the evanescent ortter—1 outside
function of thethickness f the diffraction slab, and for a the grating. One finds,

fixed value of the incident wave vectky and frequencyw,
for the TE case. An experiment of this sort would certainly |k—1y|

be difficult to perform but it can be theoretically analyzed. tang= P 17
The values ofk, and » were chosen within the resonance !

region where there are two propagating modes insigend

k1, and only one diffraction orded €0) outside the grating.
The modek, and the ordet=0 are very strongly coupled
giving rise to the smooth oscillations of the transmission
efficiency. The modex, is mostly coupled to the evanescent

orderl =—1. However, due to finite size @ all the modes j,'yha¢ it couples only to the corresponditth evanescent
are coupled. Notice that the resonance peaks in Fig. 4 appe der; the result is the same as that given by the equations

periodically. As we show below, the resonances are found Yhove. Thus, the resonance conditions given by the generali-
be separated b¥d= =/ k,. The separation of the resonances ation of Eqs.(16) and (17) for all I, are equivalent to the
may be expected but what is not so obvious is the position Oéuided-mode dispersion relation given by E@.4). An

the.flrs_t resonance. Sineg<< ey we can proceed in a pertur- analogous description exists for the TM case.
bationlike fashion. To the very lowest order, one can con-

sider that the propagating diffraction ordet 0 couples only

to the propagating mode, and as said above, the result of
this analysis fits very well the smooth oscillations of the The positions of the resonances in the diffraction efficien-
efficiencies but shows no resonance peaks. To the next ordevies, which were calculated with the exact equations, are

For even values ofm the equationg16) and (17) can be
combined and the result can be cast as the positive solution
of Eq. (14) for |=—1. An analogous procedure for the odd
values ofm yields the corresponding negative solution. We
can repeat the analysis for each new excited mogdassum-

C. Dependence ore;
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FIG. 5. () Shift (w— w4) of the first resonance for a grating of

thicknessd=1K ™! (solid line) and d=5K~! (dotted ling as a
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Clearly, if e, becomes of the order of, the resonance
“lines” are so wide that the concept of “guided mode” may
no longer be meaningful. However, we point out that no
matter how larges, is, i.e., even larger thagy, solutions to
the Maxwell equations exidthat is, of Eqgs.(9) and (10)]
with the expected result that the different propagating dif-
fraction orders are more intense than for smaller values of
€,. We find it interesting that even though the dielectric func-
tion e(x) becomes negative in sonspatial regions, energy
is still conserved. That is, the diffraction efficiencies add up
to one. It is not very clear how one could prepare a diffrac-
tion grating with these characteristics.

IV. BRAGG PEAKS

Due to the periodicity of the dielectric grating in the
direction, it is expected that there exist peaks in the diffrac-
tion efficiencies at incident angles given by the Bragg con-
dition,

2k sin6=nK, (18)
with n a positive integer. Indeed, it is known that these peaks
appear in the transmitted fields of the first diffraction order
(I=—1 in our notation at the Bragg angle witm=1, for
“thick” diffraction gratings. There have been several ap-
proximate analysis of these pealzoth from the coupled-
wave theory and from the treatment of light diffracted by
ultrasonic waves[5—7], but they are valid only in a reduced
range of parameters. Here, we report this case as well as
higher order Bragg peaks, i.en>1.

From the dispersion relation, or from E@®) for kj, , the
y component of théth diffraction order, we know how many
diffraction orders propagate at a given incident frequency

function of €;. (b) Width A w, of the same resonance for the same and angle of incidence. For instance, for @<K there are

set of parameters.

very accurately described by the approximate dispersion r
lations(14) and(15) that neglect the finiteness of the grating
modulatione;. This is a consequence of the fact that the
valuese;=0.121 andey= 3.0 agree very well with the re-
quirement €;<<ey. But, the coupling between different

at most two diffraction orderd,=0 andl=—1. As the fre-
quency is increased there appear higher orders, and they do
so in pairs,l=m—1 andl=—m with m a positive integer.

SFhe main result we want to report here is that, in general, the

diffraction ordersl=—m show peaks at angles given by
=m in the Bragg conditio(18). Although the following is
not a rigorous analysis, it appears that at the different Bragg
angles(i.e., at the different values af) the corresponding

modes inside the grating makes the guided modes, as callggkraction order, = —m, is diffracted in the same direction
in the literature, “leaky.” In other words the grating guided 55 thel=0 transmitted order. This can be seen from the

the smallere, is, compared witle,. Besides becoming wider which can be rewritten as

ase; is increased, the positions of the resonances are shifted

from their predicted value at; =0. In Fig. 5a) we show the

shift (w—w4) of the position of the first resonance fdr
=1.0K ! and ford=5.0K"! as a function ofe;; in the
former case, the resonance is centeredat0.62K 1 for
€,=0 and atw;~0.5K ! in the latter case. In Fig.(B) we

kiy=[w?— (2w sin6+1K —k,)?]"2 (19
where we have used the fact thiat=w sin6d. When the
angle of incidence obeys the Bragg conditiontiet — 1, EQ.
(18), we see that propagation of the= —n order, k;, =k,

show the widthA w, of the same resonances as a function of= w cosé, is in the direction of the incident wave. Thus, the
€,. These figures exemplify the generic behavior that théransmission efficiency is enhanced. For positive values of
peaks become wider ag is increased and that their posi- the above expression cannot be satisfied at any angle
tions shift in frequency, though the direction of the shift may(smaller than 90°). To the best of our knowledge the corre-
be positive or negative. We find that these effects are morkation between higher diffraction orders and higher order

prominent for larger values df.

Bragg peaks has not been reported before.
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(@)
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(b) (b)
0.06 - 3 ——d=50
o34 ii e d=100
n, n,
0.04 4 02
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0.1
0.00 4
0 80 0.0 T
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FIG. 6. Transmitted diffraction efficiency as a function of the
angle of incidence (deg for a frequencyw=1.3K "1, for different
grating thickness(a) | =—1 diffraction order; the maximum ap-
pears at the Bragg angle with=1, Eq.(18). (b) | = — 2 diffraction
order; the maximum appears at the Bragg angle with2,
Eqg. (18).

FIG. 7. Transmitted diffraction efficiency as a function of the
angle of incidence (deg for a frequencyw=2.0K "1, for different
grating thickness(a) | =—1 diffraction order; the maximum ap-
pears at the Bragg angle with=1, Eq.(18). (b) | = — 2 diffraction
order; the maximum appears at the Bragg angle with2,
Eq. (18).

Figures 6 and 7 show examples of this behavior for dif-, ) )
ferent thicknesa of the diffraction gratings. We highlight interpretation may be relevant to the experiments per_formed
two features of these figures. First, one finds that the peak’y Nelson and coworke28,29, in spatiotemporal gratings
are more pronounced ass increased, however, this behav- created in ferroeleptnc crystals by two crossed ultrashort la-
ior is not monotonic. For instance, one sees from Fig. 6 thagel Pulses. They find responses of diffracted pulses not only
for the orderl=—1 at the Bragg angl@=1, the peak is at the Bragg angle_ o_f the gratmg wave vector but_ at its over-
greater ford=50K ~* than ford= 100K ~*, while from Fig. tones as well. Their interpretation is that the .gratmg al_so _has
7 we find that the opposite is true foe= —2 at the Bragg _those wave vector components du_e to nonllnear excitations
anglen=2. Second, besides the main peaks there exist sed? the crystal'. I_t. may be relevgnt tollnclude in such an analy-
ondary peaks that appear to be Fabry-Perot-like interferencédS the possibility that a grating with only one wave vector
due to the finite size of the grating. These secondary peal&omponent can give rise to responses at its overtones as well.
(especially ford=100K ~!) may become even greater than
the Bragg peak and in some cases this peak is completely
masked by the secondary orjese Fig. 7a)]. The diffraction
orders with|>0 do not show any appreciable peak at any We have presented and analyzed the dispersion relation of
Bragg angle. Their behavior appears to be dominated mainlthe guided-mode resonances that appear in sinusoidally
by the Fabry-Perot-like interferences. modulated dielectric diffraction gratings. The approximate

We would like to point out that from equatiofd8) that  theory, based on assuming only one propagating eigenmode
the higher order Bragg peaks can also be understood in iaside the grating and one evanescent wave outside of it,
different way. That is, as if they are the Bragg peaks of thgyives a very accurate description of the dispersion relation in
overtonesof the grating wave vectoK, i.e., of nK. This  the limit in which the modulatior; is much smaller than the

V. CONCLUSIONS AND FINAL REMARKS
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background mean dielectric constagf. As expected, the disappears. We were not able to find an analytical description
number of branches of the dispersion relation increases der the shifts and the widening of the resonances. We empha-
the thicknesdl of the grating is increased. The gaps of thesize that, in principle, any question regarding these systems
branches at the band edges of the first Brillouin zone cagan be answered through the exact coupled-wave theory
only be described through the exact theory. The dispersio[B3]; with the current available computer capabilities one can
relation allows for an overall Understanding of the behaViorachieve the necessary numerical accuracy.

of the diffraction efﬁCienCieS, for the different Ol’ders, as a Fina”y, itis very interesting and relevant to point out the
function of frequency and angle of incidence. We have founcgtesult that the locations of the Bragg peaks at different orders
that a necessary condition for the resonances to appear is thgle correlated with the different propagating diffraction or-
the number of propagating material eigenmodes must bgers. We showed that this correlation occurs at the angle
larger than the number of propagating diffraction ordersiyhere the corresponding diffraction orders propagate in the
This indicates the physical origin of the resonances: firstsame direction as the incident wave. In the several approxi-
those extra modes are excited through the coupling with thehate theories that deal with the Bragg diffract[a-7], only
diffracted orders, and when the inside multlple reflections arenhe first Bragg peak is ana|yzed and it is found that this effect
in phase, the resonance occurs. In the I’egionS where th§ more pronounced for “thicker” gratings(say, d
number of propagating modes inside the grating are equal t8. 10k ~1). We have found that, although the effect is better
the propagating diffraction orders outside of it, there are naseen for thicker gratings, the behavior is not monotonic and,
resonances. Although the dispersion relation predicts the Iojepending on the incident frequency and the thickmke
cation of the resonances, we found that these are mor@e grating, the background Fabry-Perot-like interference
clearly seen for values of the incident frequency of the ordepeaks may be of the order of, or even larger than the Bragg
of the wave vector gratingdivided byc). For higher values  peak itself. The full understanding of this complicated be-
of the frequency, the amplitudes of the resonances tend to Bgavior deserves further theoretical analysis.

diminished and in some cases completely suppressed. As the

modulatione; is increased relative te,, the coupling among

the modes is also increased, giving rise to shifts in the posi- ACKNOWLEDGMENTS

tions of the resonances as well as a reduction in their life-
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