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Dispersion relation of guided-mode resonances and Bragg peaks in dielectric diffraction gratings

Sara Nilsen-Hofseth and Vı´ctor Romero-Rochı´n*
Instituto de Fı´sica, Universidad Nacional Auto´noma de Me´xico, Apartado Postal 20-364, 01000 Me´xico, Distrito Federal, Mexico

~Received 8 March 2001; published 29 August 2001!

We present the dispersion relation of guided-mode resonances in non-dissipative dielectric diffraction grat-
ings, both fors-polarized~TE mode! and p-polarized~TM mode! incident waves. We present a simple ap-
proximate theory as well as a rigorous calculation within the so-called coupled-wave theory. We discuss the
dependence of the positions and the lifetimes of the resonances on the thickness of the gratings and on the
strength of its modulation. We find that the diffraction efficiency of the different orders show peaks at different
Bragg orders.
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I. INTRODUCTION

Simple diffraction gratings offer a very rich variety o
optical phenomena not only from a fundamental point
view but also from their enormous potential for application
In particular, modulated dielectric diffraction gratings ha
been a focus of attention for some time. Modulated diffra
tion gratings give rise to such interesting phenomena
guided-mode resonances@1–4#, Bragg diffraction@5–7#, dif-
fraction of pulses@8–10#, and diffraction through hetero
structures@11–15#. Among the most widely implemented ap
plications is the design of gratings as optical filters@16–27#.
A motivation for our study is the understanding of the d
fraction of ultrashort light pulses by spatiotemporal gratin
@28,29#.

The theoretical understanding of the diffraction throu
modulated gratings is, in principle, given by the so-cal
coupled-wave theory introduced by Moharam and Gayl
@30–33#, which is an ansatz solution of Maxwell equatio
for this class of problems. Nonetheless, such a solution
not been found in an analytical closed form, and the prob
is so rich that there are still many questions to be resolv

The purpose of this article is to provide a concise su
mary of the diffraction of an electromagnetic wave throug
sinusoidally modulated grating by means of dispersion re
tions of the guided-mode resonances@1–4#. From the corre-
sponding graphical representations of the dispersion relat
one can obtain a clear physical picture of the behavior of
diffraction efficiencies, as functions of frequency and an
of incidence, information on the material eigenmodes a
diffraction orders, the positions of guided-mode resonan
and the appearance of Bragg peaks.

We proceed by presenting results from an exact numer
analysis of the coupled-wave theory and from simple
proximate theoretical arguments. We treat both TE and
modes~i.e., electric field polarization perpendicular or para
lel to the plane of incidence!. Section II presents a quic
review of the coupled-wave theory. We emphasize the
that the coupled-wave equations give rise to material eig
modes that can be classified according to their depend
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on the electromagnetic and grating wave vectors and in t
propagating or evanescent character. This yields a c
physical picture of the origin of the guided-mode resonanc
In our opinion, these aspects have not yet been thoroug
analyzed in the current literature. Section III is the ma
contribution of this article and is devoted to the dispers
relations of the waveguide resonances for both types of
larizations. In that section we also make a brief descript
of the dependence of the resonances on the dielectric gra
modulation and on the geometric thickness of the grati
Next, in Sec. IV, we show the appearance of the Bragg pe
and point out that higher diffraction orders have peaks
higher order Bragg angles; this has not been appreciated
viously. We provide a nonrigorous explanation for this inte
esting and potentially useful phenomenon. We conclude
paper in Sec. V.

II. COUPLED-WAVE THEORY AND DIFFRACTION
EFFICIENCIES

The simplest way to pose the problem is to conside
dielectric slab in vacuum, infinite in thex-z plane and of
thicknessd in the y direction. The diffraction grating is de
scribed by a dielectric function spatially modulated in thex
direction, namely,

e~x!5e01e1 cos~Kx!, ~1!

wheree0 is the average background dielectric constant a
e1 is the strength of the modulation. This is the problem
originally considered by Born and Wolf@34#, where diffrac-
tion of light by ultrasonic waves is studied. One can consi
more complicated dielectric gratings, with several differe
periodic functions, or placed between different dielectric m
dia, or with a slanted wavevectorK dependence@33#. These
may be needed in order to describe a particular experime
situation, but as we shall see, the qualitative phenomeno
clearly independent of those details. Althoughe0 ande1 may
have arbitrary values, waveguide resonances can be e
explained if one considerse0@e1. We shall later on describe
the differences when these dielectric constants are of
same order of magnitude.

An s- or p-polarized em wave of frequencyv is incident
on the grating at an angleu with the y direction, and the
©2001 The American Physical Society14-1
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problem consists in finding the fields inside the grating
well as the reflected and transmitted ones; see Fig. 1.
shall call TE the case ofs-polarized waves and TM the cas
of p-polarized waves since in the former the fields inside
grating are similar to TE modes and in the latter to T
modes in a waveguide. The incident TE electric field is

EW inc~x,y,t !5 ẑE0eikW• rWe2 ivt ~TE! ~2!

and the incident TM magnetic field is

BW inc~x,y,t !5 ẑB0eikW• rWe2 ivt, ~TM! ~3!

where the incident wave vector is given bykW5(kx ,ky) with
kx5k sinu. The ensuing reflected and transmitted fields
expressed as

EW out
6 ~x,y,t !5 ẑ(

l
Al

6e6 iklyyei (kx1 lK )xe2 ivt ~TE! ~4!

and

BW out
6 ~x,y,t !5 ẑ(

l
Cl

6e6 iklyy ei (kx1 lK )xe2 ivt ~TM!

~5!

where the superindex (1) refers toy>d ~transmitted! and
(2) to y<0 ~reflected!. The wave vector componentkly is
given by (c[1, so thatk5v)

kly5Av22~kx1 lK !2. ~6!

The different values ofl of the field outside the grating ar
called thediffraction orders, which can be either propagatin
or evanescent depending on whether the componentkly is
real or imaginary. The amplitudesAl

6 andCl
6 are found by

matching boundary values with the fields inside the grati
The solutions inside the gratings follow from applyin

Maxwell equations to the ansatz known as coupled-w
theory@30–33#. That is, the fields inside are assumed to b
sum of coupled waves,

FIG. 1. The system setup. The system is infinite in thez direc-
tion. The dielectric function is given bye(x)5e01e1 cos(Kx), with
K52p/L.
03661
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EW in~x,y,t !5 ẑ(
l

Vl~y!ei (kx1 lK )xe2 ivt ~TE! ~7!

and

BW in~x,y,t !5 ẑ(
l

Ul~y!ei (kx1 lK )xe2 ivt ~TM! ~8!

with l 5 . . . ,21,0,1, . . . . Due to thex dependence of the
dielectric functione(x), the amplitudesVl(x) andUl(x) are
coupled for all values ofl through the set of equations~that
follow from direct application of Maxwell equations!,

d2Vl~y!

dy2 1@e0v22~kx1 lK !2#Vl~y!

1
1

2
e1v2@Vl 21~y!1Vl 11~y!#50 ~TE! ~9!

and

e0

d2Ul~y!

dy2 1
1

2
e1

d2Ul 21~y!

dy2
1

1

2
e1

d2Ul 11~y!

dy2

1F S e01
e1

2

2e0
Dv22~kx1 lK !2Ge0Ul~y!

1Fe1e0v21
1

2
e1v~kx1~ l 21!K !

2
1

2
e1@kx1~ l 21!K#2G

3Ul 21~y!1S e1e0v22
1

2
e1v@kx1~ l 11!K#

2
1

2
e1@kx1~ l 11!K#2DUl 11~y!

1
1

4
e1

2v2Ul 22~y!1
1

4
e1

2v2Ul 12~y!50 ~TM!. ~10!

These sets of equations can be cast into eigenvalue prob
in which the matrices to be diagonalized are orthogonal w
real elements. Hence, the corresponding eigenvalues,
noted askn

25kn
2(K,v,kx), are real but they can be eithe

positive or negative@35#. The functionsVl(y) andUl(y) can
therefore be expressed as~infinite! sums of eigenmodes o
the material, namely,

Vl~y!5(
n

@Ananle
ikny1Bnanle

2 ikny#, ~11!

and with an analogous expression forUl(y). The eigen-
modesanl correspond to the eigenvalueskn

2 of the above-
mentioned matrix. We note that the solutionsVl(y) and
Ul(y) are expressed in terms of the wave vectorskn that are
the square roots of the eigenvalues. Therefore, the wave
torskn are purely real or purely imaginary; they have a ve
4-2
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DISPERSION RELATION OF GUIDED-MODE . . . PHYSICAL REVIEW E 64 036614
important physical meaning and, accordingly, we shall c
them propagating or evanescenteigenmodesof the material,
depending on whether they are real or imaginary. One m
keep in mind that these are electromagnetic eigenmodes
material with a dielectric function given bye(x), Eq. ~1!;
that is, they are independent of the thicknessd of the grating.
Clearly, if e1!e0, from Eqs.~9! and ~10! one finds that the
eigenmodes are approximately given by

kn'@v2e02~kx1nK!2#1/2. ~12!

As we shall see in Sec. III, the guided-mode resonances
pear when the number of propagating eigenmodes is la
than the number of propagating diffraction orders.

The measurable quantities to be calculated are the
flected and transmitted diffraction efficiencies@33#. These
are defined as the ratio of they components of the reflecte
or transmitted Poynting vectors to the incident one, avera
over one grating wave length 2p/K in the x direction and
over one period 2p/v. These efficiencies are a measure
the energy transmitted and reflected by the grating, and
be calculated order by order,

h l 6[6
S̄l 6

y

Si
y

, ~13!

with an obvious notation, and where the overbar repres
the averages mentioned above.Sl 6

y 5(1/8p)El 6
z Bl 6** for the

TE case and an analogous expression for the TM case.
sum of all efficiencies adds up to one, due to energy con
vation @33#. In our numerical calculations this property
used to verify the correctedness of the results. For gi
values of the incident frequency and angle, we can know
advance how many real eigenmodes of the system and
many propagating diffraction orders exist~the rest being
imaginary, see below!. Thus, we truncate the matrix gene
ated by Eq.~9! or ~10! so as to obtain energy conservation
to ten significant digits.

In Fig. 2~a! we show an example of the transmitted d
fraction efficiency as a function of frequencyv of the inci-
dent TE wave, for a slab ofd510K21, e053, e150.121,
and at an incident angle ofu528°; in the inset, the first
resonance peak is shown at an enlarged scale. In Fig. 2~b! we
show the TM case for the same parameters. The impor
feature we want to highlight is that, besides the expec
wide undulations of the transmitted diffraction efficiency d
to the finite thickness of the slab, there appear at irreg
intervals very sharp peaks of large transmission or reflect
These are the guided-mode resonances that we explain i
next section.

III. GUIDED-MODE RESONANCES

A guided mode is a solution of Maxwell equations in a
space, the absence of the incident wave (E050 for TE and
B050 for TM!, and in the form of propagating waves in th
x direction. In they direction we search for solutions prop
gating through the grating but evanescent outside it. Th
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solutions are the analogs of guided modes in act
waveguides.

A. Dispersion relations

From the equations~9! and ~10! we can find numerically
the dispersion relationv vs kx by searching for the solution
mentioned above. We have performed such a procedure
we show below, but first we want to sketch a simple analy
cal calculation of the dispersion relation that is valid in t
limit e1!e0. The reason for this approximation is that in th
limit the modes inside the slab with different values ofl are
weakly coupled, see Eqs.~9! and ~10!. This way, for TE
waves, we assume that we can sete1'0 in Eq. ~9!, so that
the eigenmodes are now approximately given byanl'dnl
and the wave vectorsk l by Eq. ~12!, i.e., the solution~11!
has one term only. Therefore, we can search for propaga
solutions inside the grating by considering onlyonemode at
a time as if in a waveguide. Outside the grating we assu

FIG. 2. Transmitted diffraction efficiencyh as a function of
frequencyv of the incident monochromatic wave, incident at a
angle u528°. The thickness of the diffraction grating isd
510K21 with e053 ande150.121.~a! TE mode. In the inset, the
first resonance is shown in the frequency interval fromv
50.470 751K21 to v50.470 752K21. ~b! TM mode.
4-3
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SARA NILSEN-HOFSETH AND VÍCTOR ROMERO-ROCHI´N PHYSICAL REVIEW E 64 036614
the fields are evanescent and theiry dependence is therefor
given by exp(2uklyuuyu), where uklyu5@(kx1 lK )22v2#1/2

@see Eq.~6!#. Clearly,kx , v, andK are such thatk l anduklyu
are real. It is a simple exercise to show that these solut
exist if one of the following conditions are satisfied~cf. Refs.
@2,3#!:

tanS 1

2
k ldD5H uklyu/k l

2k l /uklyu
TE ~14!

tanS 1

2
k ldD5H e0uklyu/k l

2k l /e0uklyu
TM. ~15!

For a given value ofd, the above conditions are the dispe
sion relationsv vs kx of the guided modes in the limite1
!e0. In Fig. 3 we show the first Brillouin zone of th
guided-mode dispersion relationv vs kx for different values
of d for the TE case.

Figure 3~a! shows generic features of the dispersion re
tion for the TE case while Figs. 3~b! and 3~c! are particular
examples ford51.0K21 and d510.0K21, respectively. In
particular, in Fig. 3~b! we also show the dispersion relatio
obtained from the exact equations~9! for e150.121 ande0
53.0; the actual branches for these values are essen
identical to the approximate solutions~14!, except at the
Brillouin zone edges where the actual branches split; see
inset of Fig. 3~b!.

The general features of the dispersion relation shown
Fig. 3~a! are the following. First, we can distinguish a regio
formed by the areas bounded from above by the solid li
defined by the change of the diffraction orderskly from real
to imaginary @see Eq.~6!# and from below by the dashe
lines defined by the first time an eigenmodekn(K,v,kx)
becomes propagating@for small e1 this is approximately
given by the change of the correspondingkn from imaginary
to real, see Eq.~12!#. We find, both from the exact and th
approximate calculations, that for any value of the thickn
d of the grating all the guided-mode branches of the disp
sion relation are contained within such a region; let us ca
the ‘‘resonance region.’’ Of course, the location of t
branches of the guided-mode dispersion relation depend
plicitely on the given value ofd, see Figs. 3~b! and 3~c!.
Second, from the numerical analysis of the structure of
eigenmodes of theexactequations~9! and ~10!, which are
independent ofd, one finds that below the lowest dashed li
of the resonance region there are no propagating eig
modes; between the first and the second dashed lines the
one; between the second and the third there are two, an
on. In a similar fashion, from the expression forkly , Eq. ~6!,
one can see that below the lowest solid line there are
propagating diffraction orders outside the grating; betwe
the first and second solid lines only the orderl 50 propa-
gates; between the second and the third, both thel 50 and
the l 521 orders propagate, and so on. Hence, we concl
that within the resonance region the number ofpropagating
eigenmodes is always greater than the number ofpropagat-
ing diffraction orders. Outside the resonance region th
numbers are equal and there are no guided modes. S
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each of the fieldsoutsidethe grating couple to all the eigen
modes, this gives the known additional result that the guid
modes cannot be strictly evanescent outside the gra
since, in general, there are a finite number of propaga

FIG. 3. ~a! Generic features of the dispersion relation f
s-polarized propagation, withe053 and e150.121. See text.~b!
The thick solid line is the dispersion relation for a grating of thic
nessd51K21. The inset shows the band gap at the Brillouin zo
edge.~c! The thick solid lines is the dispersion relation for a grati
of thicknessd510K21. The dotted line represents the incide
wave vector at an angle ofu528°.
4-4
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DISPERSION RELATION OF GUIDED-MODE . . . PHYSICAL REVIEW E 64 036614
diffraction orders. This in turn indicates that the branches
the dispersion relation in Figs. 3~b! and 3~c!, have afinite
width. In other words, the guided modes have a finite li
time. On the other hand, it is this coupling that allows t
guided modes to be excited. As an aside point we recall
the lines defined bykly50 are the places where the so-call
Wood anomalies@36# should appear. We have not found a
peculiar behavior along these lines, other than being
place where the corresponding diffraction order emerges

From the dispersion relation one can find the origin of
peaks of the diffraction efficiencies. Consider the case of
diffraction efficiency of the grating of thicknessd
510.0K21 for the TE mode shown in Fig. 2~a!. In Fig. 3~c!
we show the dispersion relation for this case together wit
dashed line that represents the frequency of the incid
wave, as a function ofkx , for an incident angle ofu528°.
The peaks of the corresponding diffraction efficiency@see
Fig. 2~a!# appear at the frequencies where the dashed
crosses the dispersion relation of the guided modes. We p
out that, by inspection of diffraction efficiencies for seve
different cases, one finds that as frequency is increased
peaks of the guided-mode resonances tend to be diminis
and in some cases, they dissappear altogether. We be
this is a consequence of the fact that asv is increased, the
number of propagating eigenmodes also increases, gi
rise to a distribution of the incident energy among ma
modes, resulting in a poor excitation of the correspond
guided modes. We found that the resonances always
present when the incident wave vector is of the order of
grating wave vector.

B. Physical origin of the resonances

The fact that inside the resonance region the numbe
propagatingeigenmodes is larger than the number ofpropa-
gatingdiffraction orders suggests a simple physical expla
tion for the resonance phenomenon. For this, we refer to
4 where we show the transmitted diffraction efficiency a
function of thethickness dof the diffraction slab, and for a
fixed value of the incident wave vectorkx and frequencyv,
for the TE case. An experiment of this sort would certain
be difficult to perform but it can be theoretically analyze
The values ofkx and v were chosen within the resonanc
region where there are two propagating modes inside,k0 and
k1, and only one diffraction order (l 50) outside the grating
The modek0 and the orderl 50 are very strongly coupled
giving rise to the smooth oscillations of the transmiss
efficiency. The modek1 is mostly coupled to the evanesce
orderl 521. However, due to finite size ofe1 all the modes
are coupled. Notice that the resonance peaks in Fig. 4 ap
periodically. As we show below, the resonances are found
be separated byDd5p/k1. The separation of the resonanc
may be expected but what is not so obvious is the positio
the first resonance. Sincee1!e0 we can proceed in a pertur
bationlike fashion. To the very lowest order, one can c
sider that the propagating diffraction orderl 50 couples only
to the propagating modek0 and as said above, the result
this analysis fits very well the smooth oscillations of t
efficiencies but shows no resonance peaks. To the next o
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the effect of the coupling between the modes within the g
ing gives rise to the other propagating mode,k1. Consider
now the propagation of a front of the latter mode starting
an arbitrary positionx in one of the inside walls of the grat
ing. When it reaches and bounces off the opposite wal
acquires a phase 2k122f. When it returns to the origina
wall, it acquires an additional phase22f. Thus, the total
phase difference between these two fronts is 2k124f.
When this phase equals 2mp the fields add up in phas
yielding the resonance. That is,

k1d22f5mp. ~16!

The phasef can easily be calculated by assuming that t
mode only couples to the evanescent orderl 521 outside
the grating. One finds,

tanf5
uk21yu

k1
. ~17!

For even values ofm the equations~16! and ~17! can be
combined and the result can be cast as the positive solu
of Eq. ~14! for l 521. An analogous procedure for the od
values ofm yields the corresponding negative solution. W
can repeat the analysis for each new excited modekn assum-
ing that it couples only to the correspondingl th evanescent
order; the result is the same as that given by the equat
above. Thus, the resonance conditions given by the gene
zation of Eqs.~16! and ~17! for all l, are equivalent to the
guided-mode dispersion relation given by Eq.~14!. An
analogous description exists for the TM case.

C. Dependence one1

The positions of the resonances in the diffraction efficie
cies, which were calculated with the exact equations,

FIG. 4. Transmitted diffraction efficiencyh as a function of
grating thicknessd for incident s-polarized light at a frequencyv
50.6K21 and at an angleu528°. e053 ande150.121. For these
parameters there are two propagating modes within the slab and
propagating diffraction order outside of it. The resonances app
periodically due to the conditione1!e0.
4-5
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very accurately described by the approximate dispersion
lations~14! and~15! that neglect the finiteness of the gratin
modulatione1. This is a consequence of the fact that t
valuese150.121 ande053.0 agree very well with the re
quirement e1!e0. But, the coupling between differen
modes inside the grating makes the guided modes, as c
in the literature, ‘‘leaky.’’ In other words the grating guide
modes have a finite lifetime. Obviously, the lifetime is long
the smallere1 is, compared withe0. Besides becoming wide
ase1 is increased, the positions of the resonances are sh
from their predicted value ate150. In Fig. 5~a! we show the
shift (v2v1) of the position of the first resonance ford
51.0K21 and for d55.0K21 as a function ofe1; in the
former case, the resonance is centered atv1'0.62K21 for
e150 and atv1'0.5K21 in the latter case. In Fig. 5~b! we
show the widthDv1 of the same resonances as a function
e1. These figures exemplify the generic behavior that
peaks become wider ase1 is increased and that their pos
tions shift in frequency, though the direction of the shift m
be positive or negative. We find that these effects are m
prominent for larger values ofd.

FIG. 5. ~a! Shift (v2v1) of the first resonance for a grating o
thicknessd51K21 ~solid line! and d55K21 ~dotted line! as a
function of e1. ~b! Width Dv1 of the same resonance for the sam
set of parameters.
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Clearly, if e1 becomes of the order ofe0 the resonance
‘‘lines’’ are so wide that the concept of ‘‘guided mode’’ ma
no longer be meaningful. However, we point out that
matter how largee1 is, i.e., even larger thane0, solutions to
the Maxwell equations exist@that is, of Eqs.~9! and ~10!#
with the expected result that the different propagating d
fraction orders are more intense than for smaller values
e1. We find it interesting that even though the dielectric fun
tion e(x) becomes negative in somespatial regions, energy
is still conserved. That is, the diffraction efficiencies add
to one. It is not very clear how one could prepare a diffra
tion grating with these characteristics.

IV. BRAGG PEAKS

Due to the periodicity of the dielectric grating in thex
direction, it is expected that there exist peaks in the diffr
tion efficiencies at incident angles given by the Bragg co
dition,

2k sinu5nK, ~18!

with n a positive integer. Indeed, it is known that these pe
appear in the transmitted fields of the first diffraction ord
( l 521 in our notation! at the Bragg angle withn51, for
‘‘thick’’ diffraction gratings. There have been several a
proximate analysis of these peaks~both from the coupled-
wave theory and from the treatment of light diffracted
ultrasonic waves! @5–7#, but they are valid only in a reduce
range of parameters. Here, we report this case as we
higher order Bragg peaks, i.e.,n.1.

From the dispersion relation, or from Eq.~6! for kly , the
y component of thel th diffraction order, we know how many
diffraction orders propagate at a given incident frequen
and angle of incidence. For instance, for 0<v<K there are
at most two diffraction orders,l 50 andl 521. As the fre-
quency is increased there appear higher orders, and the
so in pairs,l 5m21 and l 52m with m a positive integer.
The main result we want to report here is that, in general,
diffraction ordersl 52m show peaks at angles given byn
5m in the Bragg condition~18!. Although the following is
not a rigorous analysis, it appears that at the different Br
angles~i.e., at the different values ofn) the corresponding
diffraction order,l 52m, is diffracted in the same direction
as the l 50 transmitted order. This can be seen from t
expression for they component of the diffracted wave vecto
which can be rewritten as

kly5@v22~2v sinu1 lK 2kx!
2#1/2, ~19!

where we have used the fact thatkx5v sinu. When the
angle of incidence obeys the Bragg condition forn52 l , Eq.
~18!, we see that propagation of thel 52n order, kly5ky
5v cosu, is in the direction of the incident wave. Thus, th
transmission efficiency is enhanced. For positive valuesl
the above expression cannot be satisfied at any a
~smaller than 90°). To the best of our knowledge the cor
lation between higher diffraction orders and higher ord
Bragg peaks has not been reported before.
4-6
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Figures 6 and 7 show examples of this behavior for d
ferent thicknessd of the diffraction gratings. We highligh
two features of these figures. First, one finds that the pe
are more pronounced asd is increased, however, this beha
ior is not monotonic. For instance, one sees from Fig. 6 t
for the orderl 521 at the Bragg anglen51, the peak is
greater ford550K21 than ford5100K21, while from Fig.
7 we find that the opposite is true forl 522 at the Bragg
anglen52. Second, besides the main peaks there exist
ondary peaks that appear to be Fabry-Perot-like interfere
due to the finite size of the grating. These secondary pe
~especially ford5100K21) may become even greater tha
the Bragg peak and in some cases this peak is comple
masked by the secondary ones@see Fig. 7~a!#. The diffraction
orders withl .0 do not show any appreciable peak at a
Bragg angle. Their behavior appears to be dominated ma
by the Fabry-Perot-like interferences.

We would like to point out that from equation~18! that
the higher order Bragg peaks can also be understood
different way. That is, as if they are the Bragg peaks of
overtonesof the grating wave vectorK, i.e., of nK. This

FIG. 6. Transmitted diffraction efficiencyh as a function of the
angle of incidenceu ~deg! for a frequencyv51.3K21, for different
grating thickness.~a! l 521 diffraction order; the maximum ap
pears at the Bragg angle withn51, Eq.~18!. ~b! l 522 diffraction
order; the maximum appears at the Bragg angle withn52,
Eq. ~18!.
03661
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interpretation may be relevant to the experiments perform
by Nelson and coworkers@28,29#, in spatiotemporal gratings
created in ferroelectric crystals by two crossed ultrashort
ser pulses. They find responses of diffracted pulses not o
at the Bragg angle of the grating wave vector but at its ov
tones as well. Their interpretation is that the grating also
those wave vector components due to nonlinear excitat
in the crystal. It may be relevant to include in such an ana
sis the possibility that a grating with only one wave vec
component can give rise to responses at its overtones as

V. CONCLUSIONS AND FINAL REMARKS

We have presented and analyzed the dispersion relatio
the guided-mode resonances that appear in sinusoid
modulated dielectric diffraction gratings. The approxima
theory, based on assuming only one propagating eigenm
inside the grating and one evanescent wave outside o
gives a very accurate description of the dispersion relatio
the limit in which the modulatione1 is much smaller than the

FIG. 7. Transmitted diffraction efficiencyh as a function of the
angle of incidenceu ~deg! for a frequencyv52.0K21, for different
grating thickness.~a! l 521 diffraction order; the maximum ap
pears at the Bragg angle withn51, Eq.~18!. ~b! l 522 diffraction
order; the maximum appears at the Bragg angle withn52,
Eq. ~18!.
4-7
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background mean dielectric constante0. As expected, the
number of branches of the dispersion relation increase
the thicknessd of the grating is increased. The gaps of t
branches at the band edges of the first Brillouin zone
only be described through the exact theory. The dispers
relation allows for an overall understanding of the behav
of the diffraction efficiencies, for the different orders, as
function of frequency and angle of incidence. We have fou
that a necessary condition for the resonances to appear is
the number of propagating material eigenmodes must
larger than the number of propagating diffraction orde
This indicates the physical origin of the resonances: fi
those extra modes are excited through the coupling with
diffracted orders, and when the inside multiple reflections
in phase, the resonance occurs. In the regions where
number of propagating modes inside the grating are equa
the propagating diffraction orders outside of it, there are
resonances. Although the dispersion relation predicts the
cation of the resonances, we found that these are m
clearly seen for values of the incident frequency of the or
of the wave vector grating~divided byc). For higher values
of the frequency, the amplitudes of the resonances tend t
diminished and in some cases completely suppressed. A
modulatione1 is increased relative toe0, the coupling among
the modes is also increased, giving rise to shifts in the p
tions of the resonances as well as a reduction in their l
times. We found that this behavior depends strongly on
thicknessd of the grating; for instance, ford510.0K21, the
lowest resonance is so shifted that fore1'1 it completely
n,

oc

m

a

um
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disappears. We were not able to find an analytical descrip
for the shifts and the widening of the resonances. We emp
size that, in principle, any question regarding these syst
can be answered through the exact coupled-wave the
@33#; with the current available computer capabilities one c
achieve the necessary numerical accuracy.

Finally, it is very interesting and relevant to point out th
result that the locations of the Bragg peaks at different ord
are correlated with the different propagating diffraction o
ders. We showed that this correlation occurs at the an
where the corresponding diffraction orders propagate in
same direction as the incident wave. In the several appr
mate theories that deal with the Bragg diffraction@5–7#, only
the first Bragg peak is analyzed and it is found that this eff
is more pronounced for ‘‘thicker’’ gratings~say, d
.10K21). We have found that, although the effect is bet
seen for thicker gratings, the behavior is not monotonic a
depending on the incident frequency and the thicknessd of
the grating, the background Fabry-Perot-like interferen
peaks may be of the order of, or even larger than the Br
peak itself. The full understanding of this complicated b
havior deserves further theoretical analysis.
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